
Chapter 81

Policy Gradient Methods2

Reading
1. Sutton & Barto, Chapter 9–10, 13
2. Simple random search provides a competitive approach to rein-

forcement learning at
https://arxiv.org/abs/1803.07055

3. Proximal Policy Optimization Algorithms
https://arxiv.org/abs/1707.06347

4. Are Deep Policy Gradient Algorithms Truly Policy Gradient Algo-
rithms? https://arxiv.org/abs/1811.02553

5. Asynchronous Methods for Deep Reinforcement Learning
http://proceedings.mlr.press/v48/mniha16.pdf

This chapter discusses methods to learn the controller that minimizes a3

given cost functional over trajectories of an unknown dynamical system. We4

will use what is called the “policy gradient” which will be the main section of5

this chapter.6

Recall from the last chapter that we were able to fit stochastic controllers7

of the form uθ̂(· | x) that is a probability distribution on the control-space U8

for each x ∈ X . We fitted uθ using data from the expert in imitation learning.9

We did not learn the cost-to-go for the fitted controller, like we did in the10

lectures on dynamic programming. This is a clever choice: it is often easier to11

learn the controller in a typical problem than to compute the optimal cost-to-go12

as a parametric function J∗(x).13

? Can you give another instance
when we have computed a controller
previously in the class without
coming up with its cost-to-go?

8.1 Standard problem setup in RL14

Dynamics and rewards In this and the next few chapters we will always con-15

sider discrete-time stochastic dynamical systems with a stochastic controller16

1

https://arxiv.org/abs/1803.07055
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1811.02553
http://proceedings.mlr.press/v48/mniha16.pdf

2

with parameters (weights) θ. We denote them as follows17

xk+1 ∼ p(· | xk, uk) with noise denoted by ϵk
uk ∼ uθ(· | xk)

We will also change perspective and instead of minimizing the infinite-horizon18

sum of a runtime cost, maximize the sum of a runtime reward19

r(x, u) := −q(x, u).

We do so simply to confirm to tradition and standard notation in reinforcement20

learning; the two are mathematically completely equivalent. We are interested21

in maximizing the expected value of the cumulative rewards over infinite-22

horizon trajectories of the system23

J(θ) = E
x1,x2,...

∞∑
k=0

γk r(xk, uk)︸ ︷︷ ︸
discounted return

| x0

 ; (8.1)

where each uk ∼ uθ(· | xk) and each xk+1 ∼ p(· | xk, uk).24

Trajectory space Let us write out one trajectory of such a system a bit25

more explicitly. We know that the probability of the next state xk+1 given26

xk is p(xk+1 | xk, uk). The probability of taking a control uk at state xk is27

uθ(uk | xk). We denote an infinite trajectory by28

τ = x0, u0, x1, u1,

The probability this entire trajectory occurring is29

pθ(τ) =

∞∏
k=0

p(xk+1 | xk, uk) uθ(uk | xk);

we have emphasized that the distribution of trajectories depends on the weights30

of controller θ. If we take the logarithm,31

log pθ(τ) =

∞∑
k=0

log p(xk+1 | xk, uk) + log uθ(uk | xk).

Given a trajectory τ = x0, u0, x1, u1, . . ., the sum32

R(τ) =

∞∑
k=0

γk r(xk, uk) (8.2)

is called the discounted return of the trajectory τ . Sometimes we will also talk33

of the undiscounted return of the trajectory which is the sum of the rewards34

up to some fixed finite horizon T without the discount factor pre-multiplier.35

3

Using this notation, we can write out objective from (8.1) as36

J(θ) = E
τ∼pθ(τ)

[R(τ) | x0] (8.3)

where p(τ) is the probability distribution of an infinitely long trajectory τ .37

Observe what is probably the most important point in policy-gradient based38

reinforcement learning: the probability of trajectory is an infinite product of39

terms all of which are smaller than 1 (they are probabilities), so it is essentially40

zero even if the state-space and the control-space are finite (even if they are41

small). Any given infinite (or long) trajectory is quite rare under the probability42

distribution of the stochastic controller. Policy-gradient methods sample lots43

of trajectories from the system and average the returns across these trajectories.44

Since the set of trajectories of even a small MDP is so large, sampling lots45

of trajectories, or even the most likely ones, is also very hard. This is a key46

challenge in getting RL algorithms to work.47

Our goal in this chapter is to compute the best stochastic controller
which maximizes the average discounted return. Mathematically, this
amounts to finding

θ̂ = argmax
θ

J(θ) := E
τ∼pθ(τ)

[R(τ) | x0] . (8.4)

The objective J(θ) is called the average return of the controller uθ.

Computing the average return J(θ) Before we move on to optimizing48

J(θ), let us discuss how to compute it for given weights θ of the stochastic49

controller. We can sample n trajectories from the system and compute the an50

estimate of the expectation51

Ĵ(θ) ≈ 1

n

n∑
i=0

T∑
k=0

γkr(xik, u
i
k) (8.5)

for some large time-horizon T and where each uik ∼ uθ(· | xik).

? Contrast (8.5) with the
complexity of policy evaluation
which was simply a system of linear
equations. Evaluating the policy
without having access to the
dynamical system is harder.

52

8.2 Cross-Entropy Method (CEM)53

Let us first consider a simple method to compute the best controller. The basic54

idea is to solve the problem55

θ̂ = argmax
θ

J(θ)

using gradient descent. We would like to update weights θ iteratively56

θk+1 = θk + η ∇ J(θ).

where the step-size is η > 0 and ∇ J(θ) is the gradient of the objective J(θ)57

with respect to weights θ. Instead of computing the exact ∇ J(θ) which58

4

we will do in the next section, let us simply compute the gradient using a59

finite-difference approximation. The ith entry of the gradient is60

(∇̂J(θ))i =
J(θ + ϵ ei)− J(θ − ϵ ei)

2ϵ
≈ Ĵ(θ + ϵ ei)− Ĵ(θ − ϵ ei)

2ϵ
.

where ei = [0, 0, . . . , 0, 1, 0, . . .] is a vector with 1 on the ith entry. Each61

quantity Ĵ is computed as the empirical average return of n trajectories from62

the system. We compute all entries of the objective using this approximation63

and update the parameters using64

θk+1 = θk + η∇̂ J(θk).

A more efficient way to compute the gradient using finite-differences65

Instead of picking perturbations ei along the cardinal directions, let us sample66

them from a Gaussian distribution67

ξi ∼ N(0, σ2I)

for some user-chosen covariance σ2. We can however no longer use the finite-68

difference formula to compute the derivative because the noise e is not aligned69

with the axes. We can however use a Taylor series approximation as follows.70

Observe that71

J(θ + ξ) ≈ J(θ) + ⟨∇ J(θ), ξ⟩

where ⟨·, ·⟩ is the inner product. Given m samples ξ1, . . . , ξm observe that72

Ĵ(θ + ξ1) = Ĵ(θ) +
〈
∇ J(θ), ξ1

〉
Ĵ(θ + ξ2) = Ĵ(θ) +

〈
∇ J(θ), ξ2

〉
...

Ĵ(θ + ξm) = Ĵ(θ) + ⟨∇ J(θ), ξm⟩ .

(8.6)

is a linear system of equations in ∇ J(θ) ∈ Rp where θ ∈ Rp. All quantities73

Ĵ are estimated as before using trajectories drawn from the system. We solve74

this linear system, e.g., using least-squares if m > p, to get an estimate of the75

gradient ∇̂J(θ).76

The Cross-Entropy Method is a more crude but simpler to implement
version of the above least-squares formulation. At each iteration it updates
the parameters using the formula

θk+1 = E
θ∼N(θk,σ2I)

[
θ 1{Ĵ(θ)>Ĵ(θk)}

]
. (8.7)

In simple words, the CEM samples a few stochastic controllers uθ from a
Gaussian (or any other distribution) centered around the current controller
uθk and updates the weights θk in a direction that leads to an increase in
Ĵ(θ) > Ĵ(θk).

5

8.2.1 Some remarks on sample complexity of simulation-77

based methods78

The CEM may seem to be a particularly bad method to maximize J(θ), after79

all we are perturbing the weights of the stochastic controller randomly and80

updating the weights if they result in a better average return Ĵ(θ). This is81

likely to work well if the dimensionality of weights θ ∈ Rp, i.e., p, is not too82

large. But is unlikely to work well if we are sampling θ in high-dimensions.83

Typical applications are actually the latter, remember that we are interested in84

using a deep network as a stochastic controller and θ are the weights of the85

neural networks.86

Let us do a quick computation, if the state is x ∈ Rd and u ∈ Rm with87

d = 12 (joint angles and velocities) and m = 6 for a six-degree of freedom88

robot manipulator89

90

and if we use a two-layer neural network with 64 neurons in the hidden91

layer, the total number of weights θ ∈ Rp for the function uθ(· | x) =92

N(µθ(x), σ
2
θ(x)I) where σ2(x) is a vector in Rm, is93

p = (12× 64 + 64) + (64× 6 + 6)︸ ︷︷ ︸
for µθ(x)

+(12× 64 + 64) + (64× 6 + 6)︸ ︷︷ ︸
for σ2

θ(x)

= 2, 444.

This is a very high-dimensional space to sample exhaustively, and it is quite94

large even if the input and output dimensions of the neural network are not95

too large. To appreciate the complexity of computing the gradient ∇ J(θ), let96

us think of how to compute it using finite-differences, we need two estimates97

Ĵ(θ − ϵei) and Ĵ(θ + ϵei) for every dimension i ∈ {1, . . . , p}. Each estimate98

requires us to obtain n trajectories from the system. Since the number of99

trajectories that a robot can take is quite diverse, we should use a large n, so100

let’s pick n = 200. The total number of trajectories required to update the101

parameters θk at each iteration is102

2 p n ≈ 106.

 For comparison, a busy espresso
bar in a city makes about 500 shots
per day. The espresso machine
would have to work for 5 years
without breaking down to make 106

shots.
This is an absurdly large number, and things are even more daunting when103

we realize that each update of the weights requires us to sample these many104

trajectories from the system. It is not reasonable to sample such a large number105

of trajectories from a physical robot, that too for each update of the weights.106

6

Using fast simulators for RL If we expand our horizon and think of learning107

controllers in simulation, things feel much more reasonable. While running108

a large number of trajectories may degrade a robot beyond use, doing so109

requires just computation time in a robot simulator. There is a large num-110

ber of simulators that are available with various capabilities, e.g., Gazebo111

(http://gazebosim.org) is a sophisticated simulator inside ROS that uses a num-112

ber of Physics engines such as Bullet (https://pybullet.org/wordpress), MuJoCo113

(http://www.mujoco.org) is incredibly fast although not very good modeling114

contact, Unity is a popular platform to simulate driving and complicated scenes115

(https://docs.nvidia.com/isaac/isaac/doc/simulation/unity3d.html), Drake116

(https://drake.mit.edu) is better at contact modeling but more complex and117

slower; most autonomous driving companies have developed their own driving118

simulators in-house. The assigned reading (#2) for this chapter is a paper119

which develops a very fast implementation of the CEM for use in simulators.120

Working well in simulation does not mean that a controller works well121

on the real robot It is important to realize that a simulator is not equivalent122

to the physical robot. Each simulator makes certain trade-offs in capturing123

the dynamics of the real system and it is not a given that a controller that124

was learned using data from a simulator will work well on a real robot. For125

instance, OpenAI had to develop a large number of tricks (which took about126

a year) to modify the simulator to enable the learned policy to work well on127

a robot (https://openai.com/blog/learning-dexterity) for a fairly narrow set of128

tasks.129

8.3 The Policy Gradient130

In this section, we will study how to take the gradient of the objective
J(θ), without using finite-differences.

We would like to solve the optimization problem131

max
θ
J(θ) := E

τ∼pθ(τ)
[R(τ) | x0]

We will suppress the dependence on x0 to keep the notation clear. The132

expectation is taken over all trajectories starting at state x0 realized using133

the stochastic controller uθ(· | x). We to update weights θ using gradient134

descent which amounts to135

θk+1 = θk + η∇θ E
τ∼pθ(τ)

[R(τ)] .

First let us note that the distribution pθ using which we compute the expectation136

also depends on the weights θ. This is why we cannot simply move the137

derivative ∇θ inside the expectation138

∇θ E
τ∼pθ(τ)

[R(τ)] ̸= E
τ∼pθ(τ)

[∇θ R(τ)] .

http://gazebosim.org
https://pybullet.org/wordpress
http://www.mujoco.org
https://docs.nvidia.com/isaac/isaac/doc/simulation/unity3d.html
https://drake.mit.edu
https://openai.com/blog/learning-dexterity

7

We need to think of a new technique to compute the gradient above. Essentially,139

we would like to do the chain rule of calculus but where one of the functions140

in the chain is an expectation. The likelihood-ratio trick described next allows141

us to take such derivatives. Here is how the computation goes142

∇θ E
τ∼pθ

[R(τ)] = ∇θ

∫
R(τ)pθ(τ)dτ

=

∫
R(τ)∇θ pθ(τ) dτ

(move the gradient inside, integral is over trajectories τ which do not depend onθ themselves)

=

∫
R(τ)pθ(τ)

∇ pθ(τ)

pθ(τ)
dτ

=

∫
R(τ)pθ(τ)∇ log pθ(τ)dτ

= E
τ∼pθ(τ)

[R(τ)∇ log pθ(τ)]

≈ 1

n

n∑
i=1

R(τ i)∇ log pθ(τ
i)

(8.8)
This is called the likelihood-ratio trick to compute the policy gradient. It simply143

multiplies and divides by the term pθ(τ) and rewrites the term ∇ pθ
pθ

= ∇ log pθ.144

It gives us a neat way to compute the gradient: we sample n trajectories145

τ1, . . . , τn from the system and average the return of each trajectory R(τ i)146

weighted by the gradient of the likelihood of taking each trajectory log pθ(τ
i).147

The central point to remember here is that the gradient148

∇θ log pθ(τ
i) = ∇θ

T∑
k=0

log p(xik+1 | xik, uik) + log uθ(u
i
k | xik)

=

T∑
k=0

∇θ log uθ(u
i
k | xik)

(8.9)

is computed using backpropagation for a neural network. This expression is149

called the policy gradient because it is the gradient of the objective J(θ) with150

respect to the parameters of the controller/policy θ.151

Variance of policy gradient The expression for the policy gradient may152

seem like a sleight of hand. It is a clean expression to get the gradient of the153

objective but also comes with a number of problems. Observe that154

∇ E
τ∼pθ(τ)

[R(τ)] = E
τ∼pθ(τ)

[
R(τ)

∇ pθ(τ)

pθ(τ)

]
≈ 1

n

n∑
i=1

R(τ i)
∇ pθ(τ

i)

pθ(τ i)
.

If we sample trajectories τ i that are not very likely under the distribution155

pθ(τ), the denominator in some of the summands can be very small. For156

trajectories that are likely, the denominator is large. The empirical estimate157

8

of the expectation using n trajectories where some terms are very small and158

some others very large, therefore has a large variance. So one does need lots of159

trajectories from the system/simulator to compute a reasonable approximation160

of the policy gradient.161

8.3.1 Reducing the variance of the policy gradient162

Control variates You will perhaps appreciate that computing the accurate163

policy gradient is very hard in practice. Control variates is a general concept164

from the literature on Monte Carlo integration and is typically introduced as165

follows. Say we have a random variable X and we would like to guess its166

expected value µ = E[X]. Note that X is an unbiased estimator of µ but it167

may have a large variance. If we have another random variable Y with known168

expected value E[Y], then169

X̂ = X + c(Y − E[Y]) (8.10)

is also an unbiased estimator for µ for any value of c. The variance of X̂ is170

var(X̂) = var(X) + c2 var(Y) + 2c cov(X,Y).

which is minimized for171

c∗ = −cov(X,Y)

var(Y)

for which we have172

var(X̂) = var(X)− c∗2 var(Y) =

(
1−

(
cov(X,Y)

var(Y)

)2
)

var(X).

By subtracting Y − E[Y] from our observed random variable X , we have re-173

duced the variance of X if the correlation between X and Y is non-zero. Most174

importantly, note that no matter what Y we plug into the above expression, we175

can never increase the variance of X; the worst that can happen is that we pick176

a Y that is completely uncorrelated with X and end up achieving nothing.177

Baseline We will now use the concept of a control variate to reduce the178

variance of the policy gradient. This is known as “building a baseline”. The179

simplest baseline one can build is to subtract a constant value from the return.180

Consider the PG given by181

∇ J(θ) = E
τ∼pθ

[R(τ) ∇ log pθ(τ)]

= E
τ∼pθ(τ)

[(R(τ)− b) ∇ log pθ(τ)] .

Observe that182

E
τ∼pθ(τ)

[b∇ log pθ(τ)] =

∫
dτb pθ(τ)∇ log pθ(τ)

=

∫
dτb ∇ pθ(τ) = b ∇

∫
dτ pθ(τ) = b ∇ 1 = 0.

9

Example 1: Using the average returns of a mini-batch as the baseline183

What is the simplest baseline b we can cook up? Let us write the mini-batch184

version of the policy gradient185

∇̂J(θ) := 1

b

b∑
i=1

[
R(τ i)∇ log pθ(τ

i)
]
.

where τ1, . . . , τ b are trajectories that are a part of our mini-batch. We can set186

b =
1

b

b∑
i=1

R(τ i)

can use the variance-reduced gradient187

∇̂J(θ) = 1

b

b∑
i=1

[(
R(τ i)− b

)
∇ log pθ(τ

i)
]
.

This is a one-line change in your code for policy gradient so there is no reason188

not to do it.189

Example 2: A weighted averaged of the returns using the log-likelihood of190

the trajectory The previous example showed how we can use one constant191

baseline, namely the average of the discounted returns of all trajectories in192

a mini-batch. What is the best constant b we can use? We can perform a193

similar computation as done in the control variate introduction to minimize194

the variance of the policy gradient to get the following.195

var
(
∇̂θiJ(θ)

)
= E

τ

[
((R(τ)− bi)∇θi log pθ(τ))

2
]
−
(

E
τ
[((R(τ)− bi))∇θi log pθ(τ)]

)2
= E

τ

[
((R(τ)− bi)∇θi log pθ(τ))

2
]
−
(
∇̂θiJ(θ)

)2
.

Set196

var
(
∇̂θiJ(θ)

)
dbi

= 0

in the above expression to get197

bi =
Eτ
[
(∇θi log pθ(τ))

2
R(τ)

]
Eτ
[
(∇θi log pθ(τ))

2
]

which is the baseline you should subtract from the gradient of the ith parameter198

θi to result in the largest variance reduction. This expression is just the199

expected return but it is weighted by the magnitude of the gradient, this again200

is 1–2 lines of code.201

? Show that any function that only
depends on the state x can be used
as a baseline in the policy gradient.
This technique is known as reward
shaping.

10

8.4 An alternative expression for the policy gradi-202

ent203

We will first define an important quantity that helps us think of RL algorithms.204

Definition 8.1 (Discounted state visitation frequency). Given a stochastic205

controller uθ(· | x) the discounted state visitation frequency for a discrete-time206

dynamical system is given by207

dθ(x) =

∞∑
k=0

γk P(xk = x | x0, uk ∼ uθ(· | xk)).

The distribution dθ(x) is the probability of visiting a state x computed over all208

trajectories of the system that start at the initial state x0. If γ = 1, this is the209

steady-state distribution of the Markov chain underlying the Markov Decision210

Process where at each step the MDP choses the control uk ∼ uθ(· | xk). The211

fact that we have defined the discounted distribution is a technicality; this212

version is seen in the policy gradient expression. You will also notice that213

dθ(x) is not a normalized distribution. The normalization constant is difficult214

to characterize both theoretically and empirically and we will not worry about215

it here; RL algorithms do not require it.216

Q-function Using the discounted state visitation frequency, the policy
gradient that we saw before can be written in terms of the value function
as follows.

∇ J(θ) = E
τ∼pθ

[R(τ)∇ log pθ(τ)]

= E
x∼dθ

E
u∼uθ(·|x)

[
qθ(x, u)∇θ log uθ(u | x)

]
.

(8.11)

 The derivation of this expression
is easy although tedious, you can
find it in the Appendix of the paper
“Policy gradient methods for
reinforcement learning with function
approximation” at
https://papers.nips.cc/paper/1713-
policy-gradient-methods-for-
reinforcement-learning-with-
function-approximation.pdf.

The function qθ(x, u) is similar to the cost-to-go that we have studied in
dynamic programming and is called the Q-function

qθ(x, u) = E
τ∼pθ(τ)

[R(τ) | x0 = x, u0 = u] . (8.12)

It is the infinite-horizon discounted cumulative reward (i.e., the return) if
the system starts at state x and takes the control u in the first step and runs
the controller uθ(· | x) for all steps thereafter. We make the dependence
of qθ on the parameters θ of the controller explicit.

Compare the above formula for the policy gradient with the one we had217

before in (8.8)218

∇̂J(θ) = E
τ∼pθ(τ)

[R(τ) ∇ log pθ(τ)]

= E
τ∼pθ(τ)

[(
T∑
k=0

γkr(xk, uk)

) (
T∑
k=0

∇ log uθ(uk | xk)

)]
.

It is important to notice that this is an expectation over trajectories; whereas219

https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf

11

(8.11) is an expectation over states x sampled from the discounted state vis-220

itation frequency. The control uk for both is sampled from the stochastic221

controller at each time-step k. The most important distinction is that (8.11)222

involves the expectation of the Q-function qθ weighted by the gradient of223

the log-likelihood of picking each control action. There are numerous hacky224

ways of deriving (8.11) from (8.8) but remember that they are fundamentally225

different expressions of the same policy gradient.226

This expression allows understanding of a number of properties of rein-227

forcement learning.228

1. While the algorithm collects the data, states that are unlikely under the229

distribution dθ contribute little to (8.11). In other words, the policy230

gradient is insensitive to such states. The policy update will not consider231

these unlikely states that the system is prone to visit infrequently using232

the controller uθ.233

2. The opposite happens for states which are very likely. For two controls234

u1, u2 at the same state x, the policy increases the log-likelihood of235

taking the controls weighted by their values qθ(x, u1) and qθ(x, u2).236

This is sort of the “definition” of reinforcement learning. In the expres-237

sion (8.8) the gradient was increasing the likelihood of trajectories with238

high returns, here it deals with states and controls individually.239

8.4.1 Implementing the new expression240

Suppose we have a stochastic control that is a Gaussian241

uθ(u | x) = 1

(2πσ2)
p/2

e−
∥u−θ⊤x∥2

2σ2

where θ ∈ Rd×p and u ∈ Rp; the variance σ can be chosen by the user. We242

can easily compute log uθ(u | x) in (8.11). How should one compute qθ(x, u)243

in (8.12)? We can again estimate it using sample trajectories from the system;244

each of these trajectories would have to start from a state x and the control at245

the first step would be u, with the controller uθ being used thereafter. Note that246

we have one such trajectory, namely the remainder of the trajectory where we247

encountered (x, u) while sampling trajectories for the policy gradient in (8.11).248

In practice, we do not sample trajectories a second time, we simply take this249

trajectory, let us call it τx,u and set250

qθ(x, u) =

T∑
k=0

γkr(xk, uk)

for some large time-horizon T where (x0, u0) = (x, u) and the summation251

is evaluated for (xk, uk) that lie on the trajectory τx,u. Effectively, we are252

evaluating (8.12) using one sample trajectory, a highly erroneous estimate of253

qθ.254

12

8.5 Actor-Critic methods255

We can of course do more sophisticated things to evaluate the Q-function qθ256

in our new expression of the policy gradient.257

Actor-Critic methods fit a Q-function to the data collected from the
system using the current controller (policy evaluation step) and then use
this fitted Q-function in the expression of the policy gradient (8.11) to
update the controller. In this sense, Actor-Critic methods are conceptually
similar to policy iteration.

In order to understand how to fit the Q-function, first recall that it should258

satisfy the Bellman equation. This means259

qθ(x, u) = r(x, u) + γ E
u∼uθ(·|x′),x′∼P (·|x,u)

[
qθ(x′, u′)

]
. (8.13)

We do not know a model for the system so we cannot evaluate the expectation260

over x′ ∼ P(· | x, u) like we used to in dynamic programming. But we do261

have the ability to get trajectories τ i from the system.262

Let’s say (xik, u
i
k) lie on τ i at time-step k. We can then estimate the263

expectation over P(· | xik, uik) using simply xik+1 and the expectation over the264

controls using simply uik+1 to write265

qθ(xik, u
i
k) ≈ r(xik, u

i
k) + γ qθ(xik+1, u

i
k+1) for all i ≤ n, k ≤ T.

This is a nice constraint on the Q-function. If this were a discrete-state,266

discrete-control MDP, it is a set of linear equations for the q-values. These267

constraints would be akin to our linear equations for evaluating a policy in268

dynamic programming except that instead of using the dynamics model (the269

transition matrix), we are using trajectories sampled from the system.270

Parameterizing the Q-function using a neural network If we are dealing271

with a continuous state/control-space, we can think of parameterizing the272

q-function using parameters φ273

qθφ(x, u) : X × U → R.

The parameterization is similar to the parameterization of the controller, e.g.,274

just like we would write a deterministic controller as275

uθ(x) = θ⊤x

we can think of a linear Q-function of the form276

qθφ(x, u) = φ⊤
[
x

u

]
, φ ∈ Rm+d

13

which is a linear function in the states and controls. You can also think of277

using something like278

qθφ(x, u) =
[
1 x u

]
φ

1x
u

 φ ∈ R(m+d+1)×(m+d+1).

which is quadratic in the states and controls, or in general a deep network with279

weights φ as the Q-function.280

Fitting the Q-function We can now “fit” the parameters of the Q-function281

by solving the problem282

φ̂ = argmin
φ

1

n(T + 1)

n∑
i=1

T∑
k=0

∥qθφ(xik, uik)−r(xik, uik)−γ qθφ(xik+1, u
i
k+1)∥2.

(8.14)
which is nothing other than enforcing the Bellman equation in (8.13). If the283

Q-function is linear in [x, u] this is a least squares problem, if it is quadratic284

the problem is a quadratic optimization problem which can also be solved285

efficiently, in general we would solve this problem using stochastic gradient286

descent if we are parameterizing the Q-function using a deep network. Such a287

Q-function is called the “critic” because it evaluates the controller uθ, or the288

“actor”. This version of the policy gradient where one fits the parameters of289

both the controller and the Q-function are called Actor-Critic methods.

 We will be pedantic and always
write the q-function as qθφ. The
superscript θ denotes that this is the
q-function corresponding to the
θ-parameterized controller uθ. The
subscript denotes that the q-function
is parameterized by parameters φ.

290

Actor-Critic Methods We fit a deep network with weights θ to param-
eterize a stochastic controller uθ(· | x) and another deep network with
weights φ to parameterize the Q-function of this controller, qθφ(x, u). Let
the controller weights at the kth iteration be θk and the Q-function weights
be φk.

1. Sample n trajectories, each of T timesteps, using the current con-
troller uθk(· | x).

2. Fit a Q-function qθ
k

φk+1 to this data using (8.14). using stochastic
gradient descent. While performing this fitting (although it is not
mathematically sound), it is common to use initialize the Q-function
weights to their values from the previous iteration φκ.

3. Compute the policy gradient using the alternative expression
in (8.11) and update parameters of the policy to θk+1.

8.5.1 Advantage function291

The new expression for the policy gradient in (8.11) also has a large variance;292

this should be no surprise, it is after all equal to the old expression. We can293

however perform variance reduction on this using the value function.294

Our goal as before would be construct a relevant baseline to subtract from295

the Q-function. It turns out that any function that depends only upon the state296

14

x is a valid baseline. This gives a powerful baseline for us to to use in policy297

gradients. We can use the value function as the baseline. The value function298

for controls taken by the controller uθ(· | x) (notice that this is not the optimal299

value function, it is simply the policy evaluation) is given by300

vθ(x) = E
τ∼pθ(τ)

[R(τ) | x0 = x]

where uk ∼ uθ(· | xk) at each timestep. We also know that the value function301

is the expected value of the Q-function across different controls sampled by302

the controller303

vθ(x) = E
u∼uθ(·|x)

[
qθ(x, u)

]
. (8.15)

The value function again satisfies the dynamic programming principle/Bellman304

equation305

vθ(x) = E
u∼uθ(·|x)

[
r(x, u) + γ E

x′∼P(·|x,u)

[
vθ(x′)

]]
.

We again parameterize the value function306

vθψ(x) : X → R

using parameters ψ and fit it to the data in the same way as (8.14) to get307

ψ̂ = argmin
ψ

1

n(T + 1)

n∑
i=1

T∑
k=0

∥vθψ(xik)−r(xik, uik)−γ vθψ(xik+1)∥2. (8.16)

Using this baseline can modify the policy gradient to be

∇ J(θ) = E
x∼dθ

E
u∼uθ(·|x)

(qθφ(x, u)− vθψ(x)︸ ︷︷ ︸
aθφ,ψ(x,u)

)
∇θ log uθ(u | x)

 .
(8.17)

where each of the functions qθφ and vθψ are themselves fitted using (8.14)
and (8.16) respectively. The difference

aθφ,ψ(x, u) = qθφ(x, u)− vθψ(x)

≈ qθφ(x, u)− E
u∼uθ(·|x)

[
qθφ(x, u)

] (8.18)

is called the advantage function. It measures how much better the particu-
lar control u is for a state x as compared to the average return of controls
sampled from the controller at that state. The form (8.17) is the most
commonly implemented form in research papers whenever they say “we
use the policy gradient”.

? The advantage function is very
useful while doing theoretical work
on RL algorithms. But it is also
extremely useful in practice. It
imposes a constraint upon our
estimate qθφ and the estimate vθψ . If
we are not solving (8.14) and (8.16)
to completion, we may benefit by
imposing this constraint on the
advantage function. Can you think
of a way?

15

8.6 Discussion308

This brings to an end the discussion of policy gradients. They are, in general,309

a complicated suite of algorithms to implement. You will see some of this310

complexity when you implement the controller for something as simple as311

the simple pendulum. The key challenges with implementing policy gradients312

come from the following.313

1. Need lots of data, each parameter update requires fresh data from the314

systems. Typical problems may need a million trajectories, most robots315

would break before one gets this much data from them if one implements316

these algorithms naively.317

2. The log-likelihood ratio trick has a high variance due to uθ(· | x) being318

in the denominator of the expression, so we need to implement complex319

variance reduction techniques such as actor-critic methods.320

3. Fitting the Q-function and the value function is not easy, each param-321

eter update of the policy ideally requires you to solve the entire prob-322

lems (8.14) and (8.16). In practice, we only perform a few steps of323

SGD to solve the two problems and reuse the solution of kth iteration324

update as an initialization of the k+1th update. This is known as “warm325

start” in the optimization literature and reduces the computational cost326

of fitting the Q/value-functions from scratch each time.327

4. The Q/value-function fitted in iteration k may be poor estimates of328

the Q/value at iteration k + 1 for the new controller uθk+1(· | x). If329

the controller parameters change quickly, θk+1 is very different from330

θk, then so are qθ
k+1

and vθ
k+1

. There is a very fine balance between331

training quickly and retaining the efficiency of warm start; and tuning332

this in practice is quite difficult. A large number of policy gradient333

algorithms like TRPO (https://arxiv.org/abs/1502.05477) and PPO (334

https://arxiv.org/abs/1707.06347) try to alleviate this with varying de-335

grees of success.336

5. The latter, PPO, is a good policy-gradient-based algorithm to try on a337

new problem. For instance, in a very impressive demonstration, it was338

used to build an RL agent to play StarCraft (https://openai.com/blog/openai-339

five).340

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://openai.com/blog/openai-five
https://openai.com/blog/openai-five
https://openai.com/blog/openai-five

	Policy Gradient Methods
	Standard problem setup in RL
	Cross-Entropy Method (CEM)
	Some remarks on sample complexity of simulation-based methods

	The Policy Gradient
	Reducing the variance of the policy gradient

	An alternative expression for the policy gradient
	Implementing the new expression

	Actor-Critic methods
	Advantage function

	Discussion

